Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Añadir filtros

Tipo del documento
Intervalo de año
1.
biorxiv; 2021.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2021.11.15.468720

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for a global pandemic that has had significant impacts on human health and economies worldwide. SARS-CoV-2 is highly transmissible and the cause of coronavirus disease 2019 (COVID-19) in humans. A wide range of animal species have also been shown to be susceptible to SARS-CoV-2 infection by experimental and/or natural infections. Domestic and large cats, mink, ferrets, hamsters, deer mice, white-tailed deer, and non-human primates have been shown to be highly susceptible, whereas other species such as mice, dogs, pigs, and cattle appear to be refractory to infection or have very limited susceptibility. Sheep (Ovis aries) are a commonly farmed domestic ruminant that have not previously been thoroughly investigated for their susceptibility to SARS-CoV-2. Therefore, we performed in vitro and in vivo studies which consisted of infection of ruminant-derived cell cultures and experimental challenge of sheep to investigate their susceptibility to SARS-CoV-2. Our results showed that sheep-derived cell cultures support SARS-CoV-2 replication. Furthermore, experimental challenge of sheep demonstrated limited infection with viral RNA shed in nasal and oral swabs primarily at 1-day post challenge (DPC), and also detected in the respiratory tract and lymphoid tissues at 4 and 8 DPC. Sero-reactivity was also observed in some of the principal infected sheep but not the contact sentinels, indicating that transmission to co-mingled naive sheep was not highly efficient; hovewer, viral RNA was detected in some of the respiratory tract tissues of sentinel animals at 21 DPC. Furthermore, we used challenge inoculum consisting of a mixture of two SARS-CoV-2 isolates, representatives of the ancestral lineage A and the B.1.1.7-like alpha variant of concern (VOC), to study competition of the two virus strains. Our results indicate that sheep show low susceptibility to SARS-CoV-2 infection, and that the alpha VOC outcompeted the ancestral lineage A strain.


Asunto(s)
Infecciones por Coronavirus , Coinfección , COVID-19
2.
biorxiv; 2021.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2021.08.25.457627

RESUMEN

SARS-CoV-2 is a zoonotic agent capable of infecting humans and a wide range of animal species. Over the duration of the pandemic, mutations in the SARS-CoV-2 Spike protein (S) have arisen in circulating viral populations, culminating in the spread of several variants of concern (VOC) with varying degrees of altered virulence, transmissibility, and neutralizing antibody escape. In this study, we employed lentivirus-based pseudotyped viruses that express specific SARS-CoV-2 S protein substitutions and cell lines that stably express ACE2 from nine different animal species to gain insights into the effects of VOC mutations on viral entry and antibody neutralization capability. All animal ACE2 receptors tested, except mink, support viral cell entry for pseudoviruses expressing the parental (prototype Wuhan-1) S at levels comparable to human ACE2. Most single S substitutions (e.g., 452R, 478K, 501Y) did not significantly change virus entry, although 614G and 484K resulted in a decreased efficiency in viral entry. Conversely, combinatorial VOC substitutions in the S protein were associated with significantly increased entry capacity of pseudotyped viruses compared to that of the parental Wuhan-1 pseudotyped virus. Similarly, infection studies using live ancestral (USA-WA1/2020), Alpha, and Beta SARS-CoV-2 viruses in hamsters revealed a higher replication potential for the Beta variant compared to the ancestral prototype virus. Moreover, neutralizing titers in sera from various animal species, including humans, were significantly reduced by single substitutions of 484K or 452R, double substitutions of 501Y-484K, 452R-484K and 452R-478K and the triple substitution of 501Y-484K-417N, suggesting that 484K and 452R are particularly important for evading neutralizing antibodies in human, cat, and rabbit sera. Cumulatively, this study reveals important insights into the host range of SARS-CoV-2 and the effect of recently emergent S protein substitutions on viral entry, virus replication and antibody-mediated viral neutralization. Author summaryCells stably expressing ACE2 from various animals and a lentivirus-based SARS-CoV-2 pseudotyped virus assay were established to study SARS-CoV-2 cell entry. The results demonstrated that ACE2 from a wide range of animal species facilitate S-mediated virus entry into cells, which is supported by in silico data as well as natural and experimental infection studies. Pseudotyped viruses containing mutations in the RBD of S representative of the Alpha, Gamma, and especially Beta, variants of concern demonstrated that certain mutations are associated with increased viral entry compared to the parental S. The Beta variant was also observed to have a replicative advantage in vitro and in vivo compared to the prototype virus. Pseudotyped viruses containing combinatorial substitutions of 501Y-484K-417K, 614G-501Y-484K and 614G-501Y-484K-417N increased viral entry via ACE2 across multiple species. The 501Y or 478K single substitution did not significantly affect neutralizing capacity of immune sera compared to the prototype strain, but the addition of 484K or 452R substitutions significantly reduced the neutralizing titers.


Asunto(s)
Síndrome Respiratorio Agudo Grave
3.
biorxiv; 2021.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2021.08.15.456341

RESUMEN

SARS-CoV-2, a novel Betacoronavirus, was first reported circulating in human populations in December 2019 and has since become a global pandemic. Recent history involving SARS-like coronavirus outbreaks (SARS-CoV and MERS-CoV) have demonstrated the significant role of intermediate and reservoir hosts in viral maintenance and transmission cycles. Evidence of SARS-CoV-2 natural infection and experimental infections of a wide variety of animal species has been demonstrated, and in silico and in vitro studies have indicated that deer are susceptible to SARS-CoV-2 infection. White-tailed deer (Odocoileus virginianus) are amongst the most abundant, densely populated, and geographically widespread wild ruminant species in the United States. Human interaction with white-tailed deer has resulted in the occurrence of disease in human populations in the past. Recently, white-tailed deer fawns were shown to be susceptible to SARS-CoV-2. In the present study, we investigated the susceptibility and transmission of SARS-CoV-2 in adult white-tailed deer. In addition, we examined the competition of two SARS-CoV-2 isolates, representatives of the ancestral lineage A (SARS-CoV-2/human/USA/WA1/2020) and the alpha variant of concern (VOC) B.1.1.7 (SARS-CoV-2/human/USA/CA_CDC_5574/2020), through co-infection of white-tailed deer. Next-generation sequencing was used to determine the presence and transmission of each strain in the co-infected and contact sentinel animals. Our results demonstrate that adult white-tailed deer are highly susceptible to SARS-CoV-2 infection and can transmit the virus through direct contact as well as vertically from doe to fetus. Additionally, we determined that the alpha VOC B.1.1.7 isolate of SARS-CoV-2 outcompetes the ancestral lineage A isolate in white-tailed deer, as demonstrated by the genome of the virus shed from nasal and oral cavities from principal infected and contact animals, and from virus present in tissues of principal infected deer, fetuses and contact animals.


Asunto(s)
COVID-19 , Síndrome Respiratorio Agudo Grave , Coinfección
4.
biorxiv; 2021.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2021.08.05.455290

RESUMEN

For efficient cell entry and membrane fusion, SARS-CoV-2 spike (S) protein needs to be cleaved at two different sites, S1/S2 and S2 by different cellular proteases such as furin and TMPRSS2. Polymorphisms in the S protein can affect cleavage, viral transmission, and pathogenesis. Here, we investigated the role of arising S polymorphisms in vitro and in vivo to understand the emergence of SARS-CoV-2 variants. First, we showed that the S:655Y is selected after in vivo replication in the mink model. This mutation is present in the Gamma Variant Of Concern (VOC) but it also occurred sporadically in early SARS-CoV-2 human isolates. To better understand the impact of this polymorphism, we analyzed the in vitro properties of a panel of SARS-CoV-2 isolates containing S:655Y in different lineage backgrounds. Results demonstrated that this mutation enhances viral replication and spike protein cleavage. Viral competition experiments using hamsters infected with WA1 and WA1-655Y isolates showed that the variant with 655Y became dominant in both direct infected and direct contact animals. Finally, we investigated the cleavage efficiency and fusogenic properties of the spike protein of selected VOCs containing different mutations in their spike proteins. Results showed that all VOCs have evolved to acquire an increased spike cleavage and fusogenic capacity despite having different sets of mutations in the S protein. Our study demonstrates that the S:655Y is an important adaptative mutation that increases viral cell entry, transmission, and host susceptibility. Moreover, SARS-COV-2 VOCs showed a convergent evolution that promotes the S protein processing.


Asunto(s)
Infecciones , Síndrome Respiratorio Agudo Grave
5.
medrxiv; 2021.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2021.01.19.21249592

RESUMEN

The current COVID-19 (coronavirus disease 19) pandemic, caused by SARS-CoV-2, disproportionally affects the elderly and people with comorbidities like obesity and associated type 2 diabetes mellitus. Small animal models are crucial for the successful development and validation of antiviral vaccines, therapies and to study the role that comorbidities have on the outcome of viral infections. The initially available SARS-CoV-2 isolates require adaptation in order to use the mouse angiotensin converting enzyme 2 (mACE-2) entry receptor and to productively infect the cells of the murine respiratory tract. We have mouse-adapted SARS-CoV-2 by serial passaging a clinical virus isolate in the lungs of mice. We then used low doses of this virus in mouse models for advanced age, diabetes and obesity. Similar to SARS-CoV-2 infection in humans, the outcome of infection with mouse-adapted SARS-CoV-2 resulted in enhanced morbidity in aged and diabetic obese mice. Mutations associated with mouse adaptation occurred in the S, M, N and ORF8 genes. Interestingly, one mutation in the receptor binding domain of the S protein results in the change of an asparagine to tyrosine residue at position 501 (N501Y). This mutation is also present in the newly emerging SARS-CoV-2 variant viruses reported in the U.K. (20B/501Y.V1, B1.1.7 lineage) that is epidemiologically associated with high human to human transmission. We show that human convalescent and post vaccination sera can neutralize the newly emerging N501Y virus variant with similar efficiency as that of the reference USA-WA1/2020 virus, suggesting that current SARS-CoV-2 vaccines will protect against the 20B/501Y.V1 strain.


Asunto(s)
Diabetes Mellitus , COVID-19 , Obesidad , Virosis
6.
biorxiv; 2020.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2020.12.01.404483

RESUMEN

The ongoing pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is currently affecting millions of lives worldwide. Large retrospective studies indicate that an elevated level of inflammatory cytokines and pro-inflammatory factors are associated with both increased disease severity and mortality. Here, using multidimensional epigenetic, transcriptional, in vitro and in vivo analyses, we report that Topoisomerase 1 (Top1) inhibition suppresses lethal inflammation induced by SARS-CoV-2. Therapeutic treatment with two doses of Topotecan (TPT), a FDA-approved Top1 inhibitor, suppresses infection-induced inflammation in hamsters. TPT treatment as late as four days post-infection reduces morbidity and rescues mortality in a transgenic mouse model. These results support the potential of Top1 inhibition as an effective host-directed therapy against severe SARS-CoV-2 infection. TPT and its derivatives are inexpensive clinical-grade inhibitors available in most countries. Clinical trials are needed to evaluate the efficacy of repurposing Top1 inhibitors for COVID-19 in humans.


Asunto(s)
COVID-19 , Inflamación , Síndrome Respiratorio Agudo Grave
7.
biorxiv; 2020.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2020.08.15.252395

RESUMEN

The emergence of SARS-CoV-2 has resulted in an ongoing global pandemic with significant morbidity, mortality, and economic consequences. The susceptibility of different animal species to SARS-CoV-2 is of concern due to the potential for interspecies transmission, and the requirement for pre-clinical animal models to develop effective countermeasures. In the current study, we determined the ability of SARS-CoV-2 to (i) replicate in porcine cell lines, (ii) establish infection in domestic pigs via experimental oral/intranasal/intratracheal inoculation, and (iii) transmit to co-housed naive sentinel pigs. SARS-CoV-2 was able to replicate in two different porcine cell lines with cytopathic effects. Interestingly, none of the SARS-CoV-2-inoculated pigs showed evidence of clinical signs, viral replication or SARS-CoV-2-specific antibody responses. Moreover, none of the sentinel pigs displayed markers of SARS-CoV-2 infection. These data indicate that although different porcine cell lines are permissive to SARS-CoV-2, five-week old pigs are not susceptible to infection via oral/intranasal/intratracheal challenge. Pigs are therefore unlikely to be significant carriers of SARS-CoV-2 and are not a suitable pre-clinical animal model to study SARS-CoV-2 pathogenesis or efficacy of respective vaccines or therapeutics.


Asunto(s)
COVID-19 , Síndrome Respiratorio Agudo Grave
8.
biorxiv; 2020.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2020.08.04.235002

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the cause of Coronavirus Disease 2019 (COVID-19) and responsible for the current pandemic. Recent SARS-CoV-2 susceptibility and transmission studies in cats show that the virus can replicate in these companion animals and transmit to other cats. Here, we present an in-depth study of SARS-CoV-2 infection, associated disease and transmission dynamics in domestic cats. Six 4- to 5-month-old cats were challenged with SARS-CoV-2 via intranasal and oral routes simultaneously. One day post challenge (DPC), two sentinel contact cats were co-mingled with the principal infected animals. Animals were monitored for clinical signs, clinicopathological abnormalities and viral shedding throughout the 21 DPC observation period. Postmortem examinations were performed at 4, 7 and 21 DPC to investigate disease progression. Viral RNA was not detected in blood but transiently in nasal, oropharyngeal and rectal swabs and bronchoalveolar lavage fluid as well as various tissues. Tracheobronchoadenitis of submucosal glands with the presence of viral RNA and antigen was observed in airways of the infected cats on 4 and 7 DPC. Serology showed that both, principal and sentinel cats, developed SARS-CoV-2-specific and neutralizing antibodies to SARS-CoV-2 detectable at 7 DPC or 10 DPC, respectively. All animals were clinically asymptomatic during the course of the study and capable of transmitting SARS-CoV-2 to sentinels within 2 days of comingling. The results of this study are critical for our understanding of the clinical course of SARS-CoV-2 in a naturally susceptible host species, and for risk assessment of the maintenance of SARS-CoV-2 in felines and transmission to other animals and humans.


Asunto(s)
COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA